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1. Introduction 

A supramolecular polymer is a class of polymers held together by noncovalent, reversible bonds 
(1–4). Types of supramolecular bonds include π-π stacking, (5–8) hydrogen bonding, (9–13) and 
metal-ligand (ML) bonds (14–21). These bonds break as a result of light exposure, high 
temperature, the presence of competing ions, or mechanical stress. As the bonds break, the 
molecular weight of the polymer changes drastically, allowing reorganization of the polymer. 
The supramolecular polymers developed and described in this report are metallopolymers whose 
reversible bonds are derived from ML bonds.  

One important difference between metallopolymers and other supramolecular polymers is that 
the strength and kinetics of bond formation in metallopolymers can be adjusted by changing the 
metal ion and not the underlying chemistry of the polymer. Tridentate, pyridine-based ligands 
such as terpyridine (TPY) or 2,6-bis(1’-methylbenzimidazolyl)pyridine (MeBIP) create 
particularly strong ML bonds (14–18). Of the library of metal-ions studied, copper(II), cobalt(II), 
zinc(II), and iron(II) have a range of disparate bond strengths (table 1) and are studied for their 
effects on polymer film properties here. The bonding of Cu(II) to TPY or MeBIP is particularly 
weak (22–24). Dobrawa and Wurthner (25) show that zinc(II) binds weakly to TPY (25), but 
others demonstrate robust metallopolymer formation with MeBIP ligands (14–16). Cobalt(II) 
and iron(II) have particularly strong binding behavior with TPY and MeBIP (22–26).  

Table 1. Binding constant and ∆H0
rxn for relevant metal ions complexed with TPY.  

Metal ion/Ligand Binding Constant (K1) 
in Water (M–1) (23) 

∆H0
rxn (kJ/mol) (24) 

Rxn: M(tpy)2+ + tpy ↔ M(tpy)2
2+ 

Solvent: Acetonitrile 
Fe2+/TPY 1.3 × 107 –79.9 
Co2+/TPY 2.5 × 108 –61.5 
Zn2+/TPY 1.0 × 106 –60.7 
Cu2+/TPY — –54.4 

 
Another defining feature of metallopolymers is consistent and strong phase separation. Phase 
separation is more frequently observed in metallopolymers than in other supramolecular 
polymers due to the high aromaticity and ionic nature of the ML complex. In linear 
metallopolymers, polymers where the ligand is attached to the terminal positions of the polymer 
chain, phase separation leads to a lamellar morphology within the polymer (14, 17, 18). Within 
the lamellar region, the ML complexes order on the molecular level as observed by wide-angle 
x-ray scattering (WAXS) (14). When poly(tetrahydrofuran) (PTHF) is the linking polymer, the 
phase separation results in a polymer with a modest, approximately 10 MPa, storage modulus at 
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temperatures above the expected melting temperature of PTHF (14, 15). In poly(butyl acrylate) 
cross-linked with ML bonds, phase separation also occurs and results in a polymer that is ten 
times stiffer than the stiffness predicted by the theory of rubber elasticity (27).  

The work described in this report proposes bond scission of the ML complex and softening of the 
ML-rich phase as two relaxation processes that affect the melting point of metallopoylmers. 
Bond scission is expected to occur in these polymers due to the relatively low-bond energies 
associated with ML complexes. Several reports document scission of the ML complex at high 
temperatures, under radiation, or under mechanical load (14, 15, 17, 18, 26). While a softening 
transition within the ML-rich phase has not been discussed in the literature, several researchers 
noted that the ML-rich phase acts as physical cross-links. Beck, et al. and Kumpfer, et al. 
attribute a rubbery plateau in end-functionalized poly(tetrahydrofuran) to phase separation (14) 
and physical cross-links (15). In our previous research (27), a particularly high-rubbery plateau 
modulus also suggested that the ML-rich phase of poly(butyl acrylate) cross-linked with ML 
bonds also acts as physical cross-links. Based on x-ray diffraction (XRD) from those works, the 
ML-rich phase is amorphous and, as a result, the transition associated with it is expected to be a 
glass transition with an associated Tg.  

Determination of the relaxation processes in the ML-rich phase is important for improving 
mechanical properties and developing appropriate manufacturing conditions for 
metallopolymers. On the one hand, the choice of metal ion is important and leads to gels and 
polymer films with different properties (14, 15, 17). On the other hand, adjusting the Tg of the 
ML-rich phase requires new ligands or different counter ions, but these are aspects of the 
metallopolymer system that have not been studied extensively. To understand the relaxation 
processes better, this work investigates the high-temperature mechanical, optical, and 
morphological properties of poly(butyl acrylate) cross-linked with ML bonds. Previous work 
described the synthesis of this polymer and its properties up to 100 °C (27). The polymer system 
is particularly useful for this work since it isolates the relaxation processes of the ML-rich phase.  

 

2. Materials and Methods 

2.1 Materials 

All solvents and reagents were purchased from commercial sources and used as received unless 
otherwise mentioned. Azobisisobutyronitrile (AIBN) was twice recrystallized from MeOH. 
Butyl acrylate was passed over basic alumina and stored in a freezer. Compound 1 (Scheme 1) 
was prepared according to procedures described by Rowan and Beck (28). Compounds 2, 3, and 
4 were prepared as described by Jackson, et al. (27). 
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2.2 Film Formation 

Three types of films were manufactured. Cast films (Cast 4-M) were manufactured by dissolving 
the polymer and metal ion (0.2 mmol per gram polymer) in a solution of acetonitrile and 
chloroform (1 : 1 solvent ratio, <5% polymer concentration). Either Cu(ClO4)2 (4-Cu), 
Co(ClO4)2 (4-Co), Zn(ClO4)2 (4-Zn), or Fe(ClO4)2 (4-Fe) were used as the metal ion source. The 
solutions were poured into Teflon dishes, covered, and kept at room temperature. After the 
solvent evaporated, the films were annealed at 80 °C to remove excess solvent (Cast 4-M). A 
quicker casting process was used to initiate the pressed film process (Pressed 4-M). Solutions 
were left uncovered to evaporate and, once the solvent was removed, the polymer was hot 
pressed. To do this, the sample was placed between two metal plates with kapton spacers. When 
under pressure, 100 psi of pressure was applied to the layup. The hot press cycle followed the 
procedure: (1) 30 min at 200 °C, no pressure, (2) 10 min at 200 °C, pressure, (3) cool from  
200 to 60 °C over 4 h under pressure. All film formation steps were done in air.  

2.3 Analytical 

Dynamic mechanical analysis (DMA) data were taken using a DMA Q800 from TA Instruments 
with tensile grips. Temperature sweeps were taken at 1 hertz (Hz). Ultraviolet/visible (UV/Vis) 
spectra of samples were taken using a Perkin Elmer 950. Samples were cast onto glass cover 
slides in a procedure similar to the casting method described in section 2.2. During 
high-temperature UV/Vis experiments, the sample was sandwiched between two metal plates 
across a slit in each plate for UV/Vis collection. Heating pads attached to the metal plates 
provided heat to the sample. The difference between the recorded temperature and the actual 
sample temperature was as high as 10 °C up to 140 °C. Differential scattering calorimetry (DSC) 
was performed on a TA Instruments Q1000. All samples were run from –80 to 200 °C at 
5 °C/min. 1H nuclear magnetic resonance (NMR) spectroscopy was performed on a Bruker 600 
MHz instrument. Samples were run in deuterated chloroform and chemical shifts are reported in 
parts per million (ppm) as referenced from the residual solvent peak. Coupling constants are 
reported in Hertz.  

Small-angle x-ray scattering (SAXS) data were collected using a Molecular Metrology area 
detector. Ni-filtered CuKα x-ray radiation (λ = 1.542 Å) was produced using a Rigaku Ultrax18 
x-ray generator operated at 45 kV and 100 mA. Data collected at camera lengths of 150 cm and 
50 cm were merged into continuous data sets spanning scattering vector magnitude, q, ranging 
from 0.007 Å–1 to 0.45 Å–1. The instrument was calibrated using silver behenate for distance and 
beam center, and glassy carbon for intensity. Data were corrected for sample absorption and 
background noise before scaling to absolute intensity (cm–1). The two-dimensional data sets were 
azimuthally averaged to give intensity as a function of q, where q = 4π•sin(θ)/λ and 2θ is the 
scattering angle. All data processing and analysis were performed using IGOR Pro 6 
(WaveMetrics, Inc.) and tool suites available from Argonne National Laboratory (29). 
High-temperature SAXS was performed using a Molecular Metrology temperature control cell 
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with water cooling. The sample was sandwiched between two kapton films within the control 
cell. Data correction via a secondary sample was not possible and all measurements are absolute 
and include a peak from the caption film at 0.3 Å–1.  

Near-surface compositional depth profiling of the as-deposited coatings was performed using the 
Kratos Axis Ultra x-ray photoelectron spectroscopy system, equipped with a hemispherical 
analyzer. A 100 W monochromatic Al Kα (1486.7 eV) beam irradiated a 1 mm × 0.5 mm 
sampling area with a take-off angle of 90°. The base pressure in the x-ray photoelectron 
spectroscopy (XPS) chamber was held between 10−9 and 10−10 Torr. Elemental high-resolution 
scans for Fe2p and Co2p core levels were taken in the constant analyzer energy mode with 80 eV 
pass energy. The sp3 C1s peak was used as reference for binding energy calibration. 

X-ray diffraction measurements were performed on a Panalytical X’Pert Pro Materials Research 
Diffractometer  system using CuKα radiation (λ = 0.15406 nm) and a step size of 0.05° 2θ. 
Elevated temperature measurements were conducted using an Anton Paar HTK 2000N 
nonambient stage. Diffraction measurements were taken in 20° increments from room 
temperature to 200 °C with a 10-min hold-time before each measurement to minimize transient 
heating effects. There was no distinguishable difference between room temperature diffraction 
patterns before and after heating, indicating that the peak shifts are fully reversible. The 
d-spacing associated with the peaks for each sample and temperature was calculated by fitting 
the local curve to a quadratic function and calculating the d-spacing from the maximum in the 
quadratic function.  

3. Results and Discussion 

Reversible addition fragmentation chain transfer (RAFT) polymerization of monomer 3 and      
n-butyl acrylate resulted in a low Tg polymer with MeBIP side groups (Scheme 1) (see figure 1). 
NMR confirmed the incorporation of MeBIP groups to the polymer backbone (figure 2a) and 
showed that excess MeBIP monomer was removed from the sample. Based on UV/Vis titrations 
(figure 2b), polymer 4 contained 0.4-mmol MeBIP per gram of polymer. This was derived from 
the quantity of Zn(ClO4)2 required for the two peaks characteristic of the free MeBIP and        
Zn-MeBIP complex to reach a saturation point. This technique is common in literature and 
works as a result of the high-binding constant between Zn(II) and MeBIP (24, 27). 
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Figure 1. Scheme 1: Synthesis scheme for polymer 4.*  

 

Figure 2. NMR (a) comparing polymer 4 and monomer 3, 
and UV/Vis titration (b) of polymer 4.*  

                                                 
*Figures 1 and 2 reproduced with permission of copyright owner (see reference 27). 
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For each polymer tested, DMA of cast and pressed polymers showed that the degradation of the 
mechanical properties are dependent on the metal ion and this is consistent with the expected ML 
bonding strength (figure 3). Based on the sharp increase in tan(δ), or decrease in the storage 
modulus at high temperatures, it was evident that the metal ion choice does influence the melting 
point of the metallopolymers. The melting point trend was independent of the processing 
conditions, despite differences in the morphology between cast and pressed films discussed 
previously (27). The trend matched the strength of the ML bond such that  
Tm,4-Cu <Tm,4-Zn<Tm,4-Co. However, these melting temperatures are not well defined by DMA.  

 

Figure 3. Storage modulus and tan(δ) of cast films (a and b, respectively) and pressed films (c and d 
respectively). 

The melting temperature of cast 4-Fe is not clear from the DMA data because the slope of the 
storage modulus is positive at high temperatures for both cast and pressed 4-Fe. In addition, the 
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(figure 4) suggested that oxidation occurred during the manufacture of the films since Fe(III) was 
present in addition to Fe(II). Based on peaks obtained from previous literature (31, 32), the peak 
at 709.5 eV corresponds to Fe(II) while the peak at 712.5 eV corresponds to Fe(III). These peaks 
correspond to an atomic ratio of 1.18:1 Fe(II): Fe(III). Since Fe(III) binds poorly with TPY (17), 
it is expected to bind poorly with  MeBIP. This is consistent with the particularly low-rubbery 
plateau modulus for pressed 4-Fe and may play a role in the increasing storage modulus of 4-Fe 
at high temperature.  

 

Figure 4. XPS of pressed 4-Fe. Dotted lines correspond to 
contributions to the fit from each potential 
source.  

Oxidation is also possible in 4-Co where Co(II) is converted to Co(III). In metallopolymers 
based on TPY and 1, oxidation of cobalt does not degrade the polymer’s mechanical properties 
because the Co(III) complex is stronger than the Co(II) complex (29). For example, Mugemana, 
et al. oxidized Co(II) to form a kinetically inert complex for their block copolymer system (30). 
XPS of a powder of 1-Co cast from a solution of chloroform and acetonitrile showed that Co(III) 
was present in addition to Co(II). Figure 5 shows two main structures for the Co2p core level, 
which indicate the orbital-spin splitting for Co2p3/2 (777 eV – 797 eV) and Co2p1/2  
(797 eV – 810 eV) electrons. The Co2p3/2 peak was used for analysis. Based on previous 
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literature, the peak at 780.9 corresponds to Co(II) and the peak at 782.1 corresponds to Co(III) 
(33, 34). The atomic ratio, based on integration of the peaks, was 0.4:1 Co(II):Co(III). This 
oxidation occurred prior to the pressing phase and points to the possibility that oxidation occurs 
early in the manufacturing process of metallopolymers.  

 
Figure 5. XPS of cast 1-Co. Dotted lines correspond to 

contributions to the fit from each potential 
source. 

Based on changes in curvature in tan(δ) and the storage modulus, the melting transition of these 
metallopolymers could not be ascribed to a single relaxation mechanism. This is most evident for 
4-Co and cast 4-Fe. The peak in tan(δ) near 120 °C suggested that two independent relaxations 
occurred as the polymer’s mechanical properties degraded. Changes in curvature of 4-Cu and 
4-Zn suggested that similar relaxations also occurred in those polymers. Since there was not a 
peak in tan(δ), the relaxation mechanisms in 4-Cu and 4-Zn were likely interdependent.  

Despite the observed transitions in the mechanical properties, similar transitions did not occur 
under static conditions. UV/Vis showed no changes in the ML bonding up to 140 °C (figure 6). 
SAXS showed no changes in the morphology up to 260 °C (figure 7). DSC of 4-Cu and 4-Co 
showed no readily apparent thermodynamic transitions although the low volume fraction of the 
ML-rich phase makes it difficult to differentiate potential transitions from artifacts (figure 8). 
Only linear changes in molecular spacing occurred upon heating the polymers to 200 °C (figure 
9). Those changes occurred in the XRD peak at approximately 2θ=20°. According to Beck, et al., 
(14) this peak corresponds to amorphous structure in the ML-rich phase. As a result, these 
changes correspond to thermal expansion of the ML-rich phase. The lack of observed transitions 
in the static metallopolymer suggests that the changes in the metallopolymer system observed in 
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DMA are mechanically activated. It is possible that changes in UV/Vis, SAXS, DSC, or XRD 
may occur after longer time periods. However, annealing 4-Zn at 200 °C for 48 h resulted in 
discolored samples and suggested that the polymer undergoes partial chemical degradation if 
exposed to high temperatures beyond those experienced during the pressing process.  

 
Figure 6. UV/Vis from room temperature to 140 °C for 4-Co (a), 4-Zn (b), and 4-Cu (c). At 140 °C, the 

sample temperature differs from the reading temperature by up to 10 °C. 

 
Figure 7. SAXS of 4-Co from room temperature to 258 °C. 
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Figure 8. DSC of 4-Cu and 4-Co.  

 

Figure 9. XRD of 4-Co (a), 4-Zn (b), and 4-Cu (c) at room temperature (light red) up to 200 °C (dark red) 
in 20 °C increments. The d-spacing corresponding to the XRD peak at ca. 2θ = 20° is plotted as a 
function of temperature (d) for each polymer.  
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4. Conclusions 

In conclusion, DMA data showed that multiple relaxation processes occur in the ML-rich phase 
of poly(butyl acrylate) cross-linked with ML bonds. However, these relaxation processes did not 
occur under static conditions as observed by UV/Vis, SAXS, DSC, and XRD. These results 
suggest several future avenues of study in metallopolymers. Oxidation in these polymers was 
evident from XPS and should be studied further to eliminate or take advantage of it. The effects 
of the counter ion and chemistry of the ligand should be studied further to understand how each 
affects the Tg of the ML-rich phase. For example, these components can be modified to eliminate 
phase separation to isolate the effects of the metal ion on the mechanical properties of 
metallopolymers. Finally, to better separate ML bond scission and softening in the ML-rich 
phase, future study of changes in spectral response and morphology should be studied under 
mechanical stress. 
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List of Symbols, Abbreviations, and Acronyms 

AIBN  Azobisisobutyronitrile 

DMA  dynamic mechanical analysis 

DSC  differential scattering calorimetery 

Hz  Hertz 

MeBIP  2,6-bis(1’-methylbenzimidazolyl)pyridine 

ML  metal-ligand 

NMR  nuclear magnetic resonance 

ppm  parts per million 

PTHF  poly(tetrahydrofuran) 

RAFT  reversible addition fragmentation chain transfer 

SAXS  small-angle x-ray scattering 

TPY  terpyridine 

UV/Vis ultraviolet/visible 

WAXS  wide-angle x-ray scattering 

XPS  x-ray photoelectron spectroscopy 

XRD  x-ray diffraction 
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